More Capacity with the CSMA/IA MAC Protocol in IEEE 802.11s Wireless Mesh Networks

Sebastian Max
Communication Networks Research Group
RWTH Aachen University
Overview

- Motivation
 - IEEE 802.11 Mesh Networks
 - Radio Resource Management

- Carrier Sense Multiple Access with **Collision Avoidance** (CSMA/CA): IEEE 802.11
 - Medium Access
 - Rate Adaptation

- Carrier Sense Multiple Access with **Interference Avoidance** (CSMA/IA)
 - Idea
 - Realization

- Evaluation

- Conclusion
Classic IEEE 802.11 Wireless Network

Wired Infrastructure

Portal / Access Point (AP)
Station
Radio Link
IEEE 802.11s Wireless Mesh Network (WMN)
Radio Resource Management

• Goal:
 – Efficient usage of available radio resources in the Wireless Mesh Network (WMN)

• Taking into account:
 – Needs and properties of users, e.g. traffic load and station position
 – Interference between links

Efficient radio resources management increases the capacity of IEEE 802.11s WMNs

• Focus here:
 – When to transmit? Interference Avoidance
 – How to transmit? Rate Adaptation
IEEE 802.11 – Channel Access

- **Carrier Sense Multiple Access (CSMA):**
 - Collision Avoidance (CA):
 - Increase range for random wait on transmission failure
 - **Carrier Sensing:**
 - Physical CS:
 Channel busy if received power > -82dBm
 - Virtual CS:
 Channel busy indicated by overheard frames, e.g. RTS/CTS
IEEE 802.11 – Rate Adaptation

• Rate Adaptation: selects modulation coding scheme (MCS) for transmissions
 – Trade-Off: robustness versus nominal bit rate
 – Out of the scope of 802.11 standard

• Common strategies
 – Auto Rate Fallback (ARF):
 • Transmitter determines MCS based on success statistics
 – Receiver Based Auto Rate (RBAR)
 • Transmitter requests link quality information (LQI)
 • Receiver responds with LQI
 • Transmitter determines appropriate MCS and sends data

Radio Resource Management is separated into two steps
 1. Determine if channel is idle (CSMA/CA + Carrier Sensing)
 2. If idle, select MCS and transmit
Carrier Sense Multiple Access with Interference Avoidance (CSMA/IA)

- **Idea:**
 - Combined planning of transmission time and rate adaptation

- **Realization:**
 - Apply traffic shaping
 - Channel usage becomes regular \rightarrow predictable
 - LQI from past becomes more precise
 - Measure channel occupancy
 - Defer from transmission in slots with expected interference
CSMA/IA – Key Aspects

- Transmission Scheduling
- Channel Measurement
 - needs
 - enables
- Resource Estimation
 - determines
 - supports
- Information Exchange
 - supports
CSMA/IA – Channel Measurement

- **Measurement:**
 - Differentiate channel state
 - Idle
 - Transmitting (Tx)
 - Receiving (Rx)
 - Interference (Busy)
 - SNR of incoming beacon frames

- **Weighting:**
 - Determine mean for measurements over current and previous superframes

- **Prediction:**
 - Slots often used are considered to be busy during next superframe
 - Considering slots after period with no usage as idle
Periodic Broadcast of Information in beacons:

- List with SNR values of received beacons, together with corresponding station address
- Bitmap:
 - Interference (no reception possible)
 - Incoming transmissions (neighbour station shall defer from transmitting)

In contrast to RTS/CTS: Neighbouring stations can receive simultaneously
CSMA/IA – Resource Estimation

• Measure transmitted/offered traffic for:
 – Last 4 superframes
 compensate prediction errors
 – Previous superframe
 quickly adjust to changes in traffic behaviour

• Allocate additional slots if below threshold
 – Preferably next to existing transmission windows
 – Amount depends on currently used slots, channel prediction and ratio of traffic not transmitted

• Implicit release of unused slots
 – Change of slot usage noticed in measurement and weighting process
CSMA/IA – Transmission Scheduling

- Transmission only during:
 - slots already used in previous superframes
 - additionally allocated

- Actual transmission in transmission windows always ends in last slot
 - Reduction of variance in channel usage
 - Corresponding ACK always in the same slot
Evaluation – Simulation Description

Simulation of wireless mesh network in urban surrounding

- Mesh points: access points for 802.11 stations & portals to the Internet
- Network coverage 1km² with as few mesh points as possible
- Wireless channel model: IMT-A Urban Micro
- LOS/NLOS Links: randomized for each link, depends on distance between stations
- Traffic load: 100 client station, randomly positioned, with downlink to uplink ratio of 9:1
Evaluation - Metric

- Maximum network capacity under strict fairness constraints

\[\forall s_i : \frac{\text{trans}_{s_i}}{\text{offered}_{s_i}} \geq 1 - \varepsilon, \]

\(s_i \) : transmitter i

\(\text{trans}_{s_i} \) : transmitted traffic

\(\text{offered}_{s_i} \) : offered traffic

\(\varepsilon \) : tolerance margin
Evaluation - Results

25 simulated deployments, differing in topology and traffic at mesh points
Mean network capacity & 95% confidence interval

- **ARF**: inappropriate choice of MCS due to frequent changes of the interference situation
- **RBAR**: suffers from interfered RTS → select MCS with low bit rate and long transmission durations
- **FutureCS**: traffic scheduling leads to interference avoidance, best MCS selection for transmissions
Conclusion

• **CSMA/CA**
 - Randomized channel access + unpredictable interference
 - No appropriate MCS selection
 - Capacity reduction

• **CSMA/IA**
 - Traffic shaping + information exchange
 - Implicit medium reservation
 - Joint selection of transmission time and MCS allows for capacity increase
Thank you for your interest
smx@comnets.rwth-aachen.de
NAV Settings for RTS/CTS

STA C
STA D
STA A
STA B

Carrier Sense Range
Station C

Carrier Sense Range
Station D

time

RTS
CTS
DATA

overheard

NAV (RTS)

NAV (CTS)

RTS
CTS
DATA

ACK

SIFS
SIFS
SIFS
• Transmitters 1 and 3 are hidden from each other
• Interference only occurs at receiver 2
• Station 3 dominates channel access over station 1
• RTS/CTS: Station 1 suffers from increasing backoff due to failed handshake (ARF) or interfered RTS frames \rightarrow low MCS (RBAR)
• Transmitters 1 and 3 are hidden from each other
• Interference in case of simultaneous DATA and ACK transmissions
• High MPDU aggregation → low relative retransmission rate
• Rate adaptation on DATA/ACK interference does not avoid collisions
• RTS/CTS: strict separation of channel access degrades capacity
IMT-A Urban Micro Wireless Channel

- Shadowing fading
 random, log-normal distributed

- LOS
 Path loss function: \(PL(d, f_c) = 22.0 \log_{10}(d) + 28.0 + 20 \log_{10}(f_c) \)
 Shadowing fading: \(\sigma = 3 \)

- NLOS
 Path loss function: \(PL(d, f_c) = 36.7 \log_{10}(d) + 22.7 + 26 \log_{10}(f_c) \)
 Shadowing fading: \(\sigma = 4 \)

- Probability for LOS link
 \(P_{\text{LOS}}(d) = \min(18/d,1) \left(1 - \exp(-d/36) \right) + \exp(-d/36) \)