LTE VoIP Capacity with Soft Frequency Reuse

Dipl.-Ing. Maciej Mühleisen
ComNets TUHH
FFV Workshop 15.3.2013
Outline

- Motivation
- VoIP Scheduling
- Soft Frequency Reuse
- Scheduler Concept
- Scenario & Results
- Summary, Conclusion & Outlook
Motivation

- Long Term Evolution (LTE) has been standardized within 3GPP (3rd Generation Partnership Project)
- Efficient VoIP support is a fundamental requirement for LTE (no circuit switched domain)
- Potentially large number of VoIP users
- VoIP traffic QoS demands (delay <50 ms) must be met using packet switched scheduling
VoIP Scheduling

- Active (talking): Transmit Voice PDU (344 bit MAC PDU) every 0.02s
- Inactive (listening): Transmit Silence Insertion Descriptor (SID) PDU (144 bit MAC PDU) every 0.16s
- \(P(A) = P(I) = 0.5 \)
- Mean state sojourn time is 120s

- Deterministic IAT: \textbf{Persistent periodic resource allocation}
- Random state transmission: Changing number of active sources
VoIP Scheduling

- Semi-persistent scheduling:
 - Periodic resource assignment for voice PDUs
 - Dynamic scheduling of HARQ retransmissions and SID PDUs

→ Talk spurt multiplexing

1 TTI (1ms)

- Initial voice PDU transmission
- HARQ retransmission
- SID PDU transmission
Soft Frequency Reuse

- Fractional Frequency Reuse (FFR) method
- Increased power (e.g. x 3) on dedicated Resource Blocks (RBs) for cell edge users
- Default power on all RBs for cell center users
- VoIP: More RBs needed for VoIP-PDU ➔ closer to edge
Scheduler Concept

Candidate set $\mathbf{TB}_0 = \{\mathbf{TB}_1, \ldots, \mathbf{TB}_n\}$
Scheduler Concept

Soft Frequency Reuse:
- Limit search in time domain:
 - (no more than d TTI between PDU arrival and scheduling)
- Allow increased power on 3 RBs
 - (different in each cell group)
- Those 3 RBs could all be occupied
- Then: try to use center cell RBs with default power
- If all center RBs occupied: use edge RBs
- Use TBs with shortest delay d
- Lowest RB index, shortest TB

LimitedRBSet
- Boosted
 - **LimitedRBSet** $[1, 2, 3]$
 - **Boosted**
 - **NonEmpty Alternative**
 - **MinDelay**
 - **First**
 - **Shortest**

NotBoosted
- **LimitedRBSet** $[10...23]$
- **NonEmpty Alternative**
- **MinDelay**
- **First**
- **Shortest**

TB$_{out}$
- $|TB_{out}| = 1$
Scheduler Concept

Soft Frequency Reuse:
- Limit search in time domain: (no more than d TTIs between PDU arrival and scheduling)
- Allow increased power on 3 RBs (different in each cell group)
- Those 3 RBs could all be occupied
- Then: try to use center cell RBs with default power
- If all center RBs occupied: use edge RBs
- Use TBs with shortest delay d
- Lowest RB index, shortest TB

$\text{TB}_{out}, |\text{TB}_{out}| = 1$
Scheduler Concept

Soft Frequency Reuse:
- Limit search in time domain: (no more than d TTIs between PDU arrival and scheduling)
- Allow increased power on 3 RBs (different in each cell group)
- Those 3 RBs could all be occupied
 - Then: try to use center cell RBs with default power
 - If all center RBs occupied: use edge RBs
- Use TBs with shortest delay d
- Lowest RB index, shortest TB

$\text{MinDelay}(d) \downarrow$
$\text{First} \downarrow$
$\text{Shortest} \downarrow$
$|TB_{out}| = 1$
M.2135 IMT-Advanced Evaluation Urban Micro UPLINK

<table>
<thead>
<tr>
<th>Scenario & Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
</tr>
<tr>
<td>21 (7 x 3 Sectors)</td>
</tr>
<tr>
<td>ISD</td>
</tr>
<tr>
<td>200 m</td>
</tr>
<tr>
<td>TX Power [dBm]</td>
</tr>
<tr>
<td>$\alpha \cdot \text{Pathloss} + P_0, \alpha = 0.8$ (WINNER+, 3GPP)</td>
</tr>
<tr>
<td>Evaluated Call duration</td>
</tr>
<tr>
<td>10 s (minimal difference to 20 s)</td>
</tr>
<tr>
<td>Antenna configuration</td>
</tr>
<tr>
<td>1x1 SISO</td>
</tr>
<tr>
<td>Bandwidth, Ctrl. Channels</td>
</tr>
<tr>
<td>5 MHz BW, 2 RBs Phy. Uplink Ctrl. Channel</td>
</tr>
<tr>
<td>Small-scale fading</td>
</tr>
<tr>
<td>disabled</td>
</tr>
<tr>
<td>Time domain scheduling</td>
</tr>
<tr>
<td>disabled (first results show reduced capacity)</td>
</tr>
</tbody>
</table>

A call is successful if packet loss is below 2%
A packet is dropped if delay exceeds 50 ms
System capacity is reached if more than 2% of calls are unsatisfied
Scenario & Results

Satisfied User Ratio

240 Calls

P_0
Scenario & Results

- Boosted
- Boosted SFR
- Not Boosted

Block Error Rate (1st TX)

Number of Calls

TUHH
Technische Universität Hamburg-Harburg

ComNets
Institute of Communication Networks
Scenario & Results

255 Calls

Satisfied User Ratio vs. Cell Edge Ratio
Summary
- A scheduler framework allowing Soft Frequency Reuse was developed
- VoIP capacity with SFR was evaluated

Conclusion
- SFR results in neglectable capacity gain
 - Due to channel estimation error?
 - SFR vs. reduced trunking gain?

Outlook
- Exploit further parameters (e.g. time domain)
- Multi-User MIMO
Thank you for your attention!

Questions?

Contact:
maciej.muehleisen@tuhh.de