Long Term Evolution (LTE)

LTE is the newest 3GPP\(^1\) standard (Release 8)

The main motivation of the work presented here is the analytical modeling of the LTE QoS aware radio scheduler. And to validate our simulation results by comparing it to the analytical results.

\(^1\)3rd Generation Partnership Project
LTE Physical Resource Structure

- Resources in LTE consist of both: time and frequency dimensions.
- The smallest resource the scheduler can allocate is called a Physical Resource Block (PRB).
- A PRB consists of the following:
 - 7^2 OFDM symbols in the time domain
 - 12 sub-carriers in the frequency domain

N represents the maximum number of resource blocks which depend on the defined spectrum/bandwidth.

26 or 7 symbols depending on the length of the cyclic prefix
The packet scheduling is divided into two different stages:

- **Time Domain Scheduler (TDS):** deals with QoS requirements and user/bearer prioritization
- **Frequency Domain Scheduler (FDS):** deals with spectrum allocation and multi-user diversity exploitation

In LTE literature such a split is called *decoupled time and frequency domain scheduler*.
Two of the classical TDS schedulers are:

- **Blind Equal Throughput (BET):** give a fair chance of resources so that users can achieve similar throughput

- **Maximum Throughput (MaxT):** maximize the cell/system throughput by scheduling users with the best channel conditions

The TDS prioritization is done by calculating the priority factor.

\[P_k^{BET} (t) = \text{argmax}_k \left[\frac{1}{\frac{1}{\theta_k [t]}} \right] = \text{BET TD priority factor} \]

\[P_k^{MaxT} (t) = \text{argmax}_k [\text{SINR}_k [t]] = \text{MaxT TD priority factor} \]

- $\theta_k [t]$ is the normalized average throughput of bearer k ranging between 0 and 1
- $\text{SINR}_k [t]$ is the instantaneous SINR value of bearer k
Distributes the radio resources (PRBs) among the highest priority bearers obtained from the TDS

Exploits the multi-user diversity and tries to enhance the overall spectral efficiency

The FDS used in this work is an optimized round robin scheduler

- Serves first strictly the GBR\(^3\) bearers
- Serves the highest ψ^4 nonGBR priority bearers with the remaining resources
- Schedules the PRBs using an iterative approach

\(^3\) Guaranteed Bit Rate

\(^4\) ψ is chosen to be 5 in this work
The proposed OSA scheduler provides:

- QoS guarantees
- Fairness among users
- System performance maximization
The OSA TDS priority factor is:

\[
P_{k}^{\text{nonGBR-OSA}}(t) = \arg\max_{k} \left[W_{QoS,j} \times \frac{\gamma_{k}[t]}{\theta_{k}[t]} \right]
\]

- \(W_{QoS,j} \) is the QoS weight of the \(j^{th} \) QoS class
- \(\theta_{k}[t] \) is the normalized EMA\(^5\) throughput of bearer \(k \)
- \(\gamma_{k}[t] \) is the normalized EMA channel condition of bearer \(k \)

The OSA serves the GBR bearers (i.e., VoIP) with strict priority before the non-GBR bearers

The OSA FDS is an optimized round robin scheduler

\(^5\) Exponential Moving Average
The presented model is an extension of the model found in [1].

The scheduler has a fixed amount of PRBs to distribute among active UEs every TTI. The UEs have different SINR.

- Support different Modulation and Coding Schemes (MCS)

\[^{6}\text{Transmission Time Interval = 1ms}\]
Model Assumptions

- UEs are statistically identical with respect to the channel.
- The channel is divided into 8 states (MCS_k) ($0 < k < 7$).
- Each MCS_k has a static probability P_k (Mobility model dependent).
- UEs use the same ON/OFF elastic traffic:
 - X_{ON} is the average file size in bits.
 - t_{off} is the average OFF duration in seconds.
The model is based on the Continuous Time Markov Chain (CTMC)

- n: Markov chain state representing the number of active UEs in a TTI
- N: total number of UEs in the system

The resulting CTMC consists of $N+1$ states

- Arrival transition is performed with rate $(N - n) \lambda$ with $\lambda = 1/t_{\text{off}}$
- Departure transition is performed with a generic rate $\mu(n)$
• The FDS is a round robin scheduler
• It serves up to $\psi = 5$ users per TTI
• This means, that the UEs served per TTI are equal to η:

$$\eta = \min[n - n_0, \psi]$$

with n being the number of active users in a TTI, and n_0 is the number of users in outage7

7User is in bad channel condition that does not allow any transmission
Steady State Probability

The steady state probability $\pi(n)$ can be calculated from:

$$\pi \cdot Q = 0 \quad (1)$$

- $\pi = [\pi_0, \pi_1, \ldots \pi_N]$ and $\sum_i \pi_i = 1$
- Q is the infinitesimal generator matrix

According to Little’s law, the average ON period duration $\overline{t_{ON}}$ is:

$$\overline{t_{on}} = \frac{\sum_{n=1}^{N} n\pi(n)}{\sum_{n=1}^{N} (N - n + 1) \lambda \cdot \pi(n)}$$

$\overline{t_{ON}}$ is the duration of an active transfer, or file download time.
Departure Rate $\mu(n)$

\[\mu(n) = \frac{\sum_{(n_0,\ldots,n_K)=(0,\ldots,0)}^{(n_0,\ldots,n_K)=n} \overline{TBS}(n_0,\ldots,n_K) \binom{n}{n_0,\ldots,n_K} \prod_{k=0}^{K} P_k^{n_k}}{\overline{X_{on}} \cdot TTI} \]

- $\overline{X_{on}}$ is the average file size of the ON period
- $\binom{n}{n_0,\ldots,n_K}$ is the multinomial coefficient
- P_k is the stationary probability of MCS_k
- n_k is the number of active users in MCS_k
- $\overline{TBS}(n_0,\ldots,n_K)$ is the total number of bits transmitted for all served users under a certain combination (n_0,\ldots,n_K)
\(\overline{TBS}(n_0, \ldots, n_K) \)

\[
\overline{TBS}(n_0, \ldots, n_K) = \sum_{i=[i_1, \ldots, i_\eta]} TBS_i(\eta)
\]

- \(\eta \) is the number of users served under \((n_0, \ldots, n_K)\)
- \([i_1, \ldots, i_\eta]\) represents the index of the chosen \(\eta\) users out of the \(n\) active users considered for scheduling within a TTI
- \(TBS_i(\eta)\) denotes the number of bits of user \(i\) using his \(MCS\)
- the choice of the \(\eta\) users is determined by the TD scheduler.
Choosing η UEs Procedure

- MaxT chooses the η UEs with the highest MCS

\[
\begin{array}{ccccccc}
\text{MCS}_0 & \text{MCS}_1 & \text{MCS}_2 & \text{MCS}_3 & \text{MCS}_4 & \text{MCS}_5 & \text{MCS}_6 \\
n_0 & n_1 & n_2 & n_3 & n_4 & n_5 & n_6
\end{array}
\]

Find η UEs

Average Throughput $\left(\text{Avg. Throughtput}\right) = \sum_{k=1}^{K} TBS_k \cdot P_k$

- BET chooses the η UEs from the MCS that achieves the avg. throughput:

\[
\begin{array}{ccccccc}
\text{MCS}_0 & \text{MCS}_1 & \text{MCS}_2 & \text{MCS}_3 & \text{MCS}_4 & \text{MCS}_5 & \text{MCS}_6 \\
n_0 & n_1 & n_2 & n_3 & n_4 & n_5 & n_6
\end{array}
\]

Find $(\eta-1)$ UEs

- OSA chooses the η UEs from the MCS as follows:

\[
\begin{array}{ccccccc}
\text{MCS}_0 & \text{MCS}_1 & \text{MCS}_2 & \text{MCS}_3 & \text{MCS}_4 & \text{MCS}_5 & \text{MCS}_6 \\
n_0 & n_1 & n_2 & n_3 & n_4 & n_5 & n_6
\end{array}
\]

Find $(\eta-1)$ UEs

![Graph of Modulation and Coding Scheme (MCS) vs. Probability of MCS (P_k)]
Two Classes Model

- The single class model is extended into a two dimensional Markov Chain, with state \((i,j)\)
 - \(i\) represents the number of UEs within class 1
 - \(j\) represents the number of UEs within class 2
- The combinations within each state will increase to:
 \[(i_0, i_1, i_2, i_3, i_4, i_5, i_6, j_0, j_1, j_2, j_3, j_4, j_5, j_6, j_7)\]
 where \(\sum_i i_r = N_1\) and \(\sum_j j_r = N_2\)
Three Classes Model

Similarly the single class model can be extended into a three dimensional Markov Chain, with state \((i,j,z)\)

- \(i\) represents the number of UEs within class 1
- \(j\) represents the number of UEs within class 2
- \(z\) represents the number of UEs within class 3

The combinations within each state will increase to:

\[(i_0, i_1, i_2, i_3, i_4, i_5, i_6, i_7, j_0, j_1, j_2, j_3, j_4, j_5, j_6, j_7, z_0, z_1, z_2, z_3, z_4, z_5, z_6, z_7)\]

where \(\sum_r i_r = N_1\) and \(\sum_r j_r = N_2\)
and \(\sum_r z_r = N_3\)
Scenarios Configuration

<table>
<thead>
<tr>
<th>General parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (# PRBs)</td>
<td>5 MHz (i.e., 25 PRBs)</td>
</tr>
<tr>
<td>Radio QoS weights</td>
<td>$W_{QoS1}=5$, $W_{QoS2}=2$ and $W_{QoS3}=1$</td>
</tr>
<tr>
<td>Traffic model</td>
<td>FTP with different IATs:</td>
</tr>
<tr>
<td></td>
<td>uniform (0, 30) s, uniform (15, 45) s,</td>
</tr>
<tr>
<td></td>
<td>uniform (30, 60) s and uniform (45, 75) s</td>
</tr>
<tr>
<td>Simulation run time</td>
<td>8000 s, 10 seeds with 95% confidence interval</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Class1</th>
<th>Class2</th>
<th>Class3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxT</td>
<td>10 UEs with</td>
<td>6 UEs with</td>
<td>3 UEs with</td>
</tr>
<tr>
<td></td>
<td>5, 10 and 15 MByte</td>
<td>10 MByte</td>
<td>15 MByte</td>
</tr>
<tr>
<td>w-MaxT</td>
<td>3 UEs with</td>
<td>6 UEs with</td>
<td>3 UEs with</td>
</tr>
<tr>
<td></td>
<td>5 MByte</td>
<td>10 MByte</td>
<td>15 MByte</td>
</tr>
</tbody>
</table>
MaxT Average FTP download time (10UEs scenario)

- 5MB simulation
- 5MB analytical
- 10MB simulation
- 10MB analytical
- 15MB simulation
- 15MB analytical
Average FTP Download Time: w-MaxT

w-MaxT Average FTP download time

- **class1 simulation**
- **class1 analytical**
- **class2 simulation**
- **class2 analytical**

Inter-arrival time IAT (sec)

Download time (sec)

![Graph showing average FTP download time with different classes and simulation vs. analytical results.](image)
Average FTP Download Time: w-MaxT

w-MaxT Average FTP download time

- class1 simulation
- class1 analytical
- class2 simulation
- class2 analytical
- class3 simulation
- class3 analytical

Iner-arrival-time IAT (sec)

Download time (sec)
The proposed analytical model shows very accurate results compared to the simulation results.

The model can support up to three different QoS classes.

The analytical model only requires a couple of minutes to run (much faster than simulations).

The model can be extended to:

- support more QoS classes
- a GBR class can also be modeled
- other types of TDS can also be modeled
Thanks for Listening

Any questions?
Backup issues

- LTE QoS bearers
- 3GPP QoS bearer classification
- Channel dependent scheduling
- Channel model
- Analytical model scaling
- Analytical model TBS(n)
- Analytical model Q-matrix
BACKUP
3GPP QoS Bearer Classification

- E-UTRAN
 - UE
 - eNodeB
- EPC
 - S-GW
 - P-GW
- Internet
 - Peer Entity

End-to-End Service

EPS Bearer
- Radio Bearer
- S1 Bearer
- S5/S8 Bearer

External Bearer
- LTE-Uu
- S1
- S5/S8
- SGi
LTE QoS Bearers

<table>
<thead>
<tr>
<th>QCI</th>
<th>Bearer type</th>
<th>Priority</th>
<th>Packet delay budget (ms)</th>
<th>Packet error loss rate</th>
<th>Example services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GBR</td>
<td>2</td>
<td>100</td>
<td>10^{-2}</td>
<td>Conversational voice</td>
</tr>
<tr>
<td>2</td>
<td>GBR</td>
<td>4</td>
<td>150</td>
<td>10^{-3}</td>
<td>Conversational video (live streaming)</td>
</tr>
<tr>
<td>3</td>
<td>GBR</td>
<td>5</td>
<td>300</td>
<td>10^{-6}</td>
<td>Non-conversational video (buffered streaming)</td>
</tr>
<tr>
<td>4</td>
<td>GBR</td>
<td>3</td>
<td>50</td>
<td>10^{-3}</td>
<td>Real time gaming</td>
</tr>
<tr>
<td>5</td>
<td>non-GBR</td>
<td>1</td>
<td>100</td>
<td>10^{-6}</td>
<td>IMS signaling</td>
</tr>
<tr>
<td>6</td>
<td>non-GBR</td>
<td>7</td>
<td>100</td>
<td>10^{-3}</td>
<td>Voice, video (live streaming), interactive gaming</td>
</tr>
<tr>
<td>7</td>
<td>non-GBR</td>
<td>6</td>
<td>300</td>
<td>10^{-6}</td>
<td>Video (buffered streaming)</td>
</tr>
<tr>
<td>8</td>
<td>non-GBR</td>
<td>8</td>
<td>300</td>
<td>10^{-6}</td>
<td>TCP based (e.g., www, e-mail, chat, FTP, p2p)</td>
</tr>
<tr>
<td>9</td>
<td>non-GBR</td>
<td>9</td>
<td>300</td>
<td>10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

- **Nine predefined QoS classes**
 - four Guaranteed Bit Rate (GBR)
 - five non Guaranteed Bit Rate (nonGBR)
- **Operators are free to choose their own classification**
Channel Dependent Scheduling

Diagram showing frequency and time slots for User #1 and User #2.
Path loss:

\[128.1 + 37.6 \cdot \log_{10}(\text{distance}) \]

Correlated slow fading:
- Log-normal distributed

Fast fading:
- Jakes-like method
- Two extended ITU channel models
 - Extended pedestrian A
 - Extended vehicular A
Another solution will be to use the closed loop solution from the birth-and-death process of the Markov chain:

$$\pi(n) = \left[\prod_{i+1}^{n} \frac{(N - i + 1)\lambda}{\mu(i)} \right] \pi(0)$$

$\pi(0)$ is obtained by normalization.
If we have two active UEs i.e. $n=2$

- Those two users can be at any MCS (from MCS_0 to MCS_7)

If we represent the number of users in each MCS_k by n_k we get:

$$(n_0, n_1, n_2, n_3, n_4, n_5, n_6, n_7)$$

with $n_0 + \ldots + n_7 = n$

Then we have the following possible combinations:

\[
\begin{array}{cccccccc}
\text{Comb} & M_{C50} & M_{C51} & M_{C52} & M_{C53} & M_{C54} & M_{C55} & M_{C56} & M_{C57} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
9 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
10 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
12 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
13 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
14 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
15 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
16 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
17 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
18 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
19 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
20 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
21 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
22 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
23 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
24 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
25 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
26 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
27 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
28 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
29 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
30 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
31 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
32 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
33 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
34 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
35 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
$$\overline{TBS}(2) = \sum_{(n_0, \ldots, n_K) = (0, \ldots, 0) \mid \begin{array}{c} n_0 + \ldots + n_K = 0 \\ n_0 \neq 2 \end{array}} \overline{TBS}(n_0, \ldots, n_K) \left(\begin{array}{c} 2 \\ n_0, \ldots, n_K \end{array} \right) \left[\prod_{k=0}^{K} P_k^{n_k} \right]$$

(3)

Average number of bits transmitted per PRB under a certain combination

Prob. of a combination.

Sum of all probabilities of each combination is equal to 1.
Q Infinitesimal Generator Matrix

\[Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[Q(i, i) = - \sum_j Q(i, j) \]
The average number of active users \bar{Q} is expressed as:

$$\bar{Q} = \sum_{N_1} \sum_{N_2} i \pi(i, j)$$

The mean number of departures by unit of time is \bar{D} and is obtained as:

$$\bar{D} = \sum_{N_1} \sum_{N_2} \mu_1(i, j) \pi(i, j)$$

According to Little’s law, the average ON period duration \bar{t}_{ON} (i.e. duration of an active transfer):

$$\bar{t}_{on} = \frac{\bar{Q}}{\bar{D}}$$
Departure Rate $\mu_1(i, j)$

$$\mu_1(i, j) = \frac{\overline{TBS_1(i, j)}}{X_{1_{on}} \cdot TTI}$$

- $\overline{TBS_1(i, j)}$ is the average amount of bits sent by all served UEs in a TTI
- $X_{1_{on}}$ is the average file size of class 1 UEs
- TTI is the Transmission Time Interval (1ms)
Generic Average Bit Rate \(TBS_1(i, j) \)

\[
TBS_1(i, j) = \sum_{(i_0, \ldots, i_K, j_0, \ldots, j_K) = (0, \ldots, 0)}^{(i, \ldots, i, j, \ldots, j)} i!j! TBS_1(i_0, \ldots, i_K, j_0, \ldots, j_K) \left[\prod_{k=0}^{K} \frac{P_{i_k} P_{j_k}}{i_k! j_k!} \right]
\]

- \(P_k \) is the stationary probability of MCS\(_k\)
- \(i_k \) is the number of class 1 active users in MCS\(_k\)
- \(j_k \) is the number of class 2 active users in MCS\(_k\)
- \(TBS_1(i_0, \ldots, i_K, j_0, \ldots, j_K) \) is the total bits transmitted for all served UEs under a certain combination \((i_0, \ldots, i_K, j_0, \ldots, j_K)\)
\[TBS_1(i_0, \ldots, i_K, j_0, \ldots, j_K) = \sum_{r=[r_1,\ldots,r_{\delta_1}]} TBS_r(\eta) \]

\[r_{\delta_1} + r_{\delta_2} = \eta \]

- \(r \) is a vector representing the indices of the served users in class1
- \(r_{\delta_1} \) is the number of users served in class1.
- \(TBS_2(i_0, \ldots, i_K, j_0, \ldots, j_K) \) can be calculated similarly
Choosing \textit{eta} Users

\[
\text{Average Throughput} = \sum_{k=1}^{K} TBS_k \cdot P_k
\]

- K is the number of MCSs
- TBS_k is the transport block size using MCS$_k$
- P_k is the static probability of MCS$_k$
- Avg. throughput for RWP is MCS$_5$
- Avg. throughput for RD is MCS$_4$
These measurements were performed in MATLAB using a server with AMD Phenom(tm) 9850 Quad-Core Processor 2.50 GHz, 8.00 GB of RAM, and 64-bit Windows 7 OS.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of UEs</th>
<th>Combinations</th>
<th>Run time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>10 UEs</td>
<td>19448</td>
<td>2 seconds</td>
</tr>
<tr>
<td></td>
<td>20 UEs</td>
<td>888029</td>
<td>79 seconds</td>
</tr>
<tr>
<td>2-D</td>
<td>(3,6) UEs</td>
<td>205919</td>
<td>49 seconds</td>
</tr>
<tr>
<td>3-D</td>
<td>(2,3,5) UEs</td>
<td>3421440</td>
<td>13 minutes</td>
</tr>
</tbody>
</table>

The graph shows the number of combinations for different models.

of Combinations vs. Model:

- **1-D**: 0
- **2-D**: 0.5
- **3-D**: 1
- **4-D**: 1.5
- **5-D**: 2
- **6-D**: 2.5
- **7-D**: 3
- **8-D**: 3.5
- **9-D**: 4

For each model, the number of combinations is shown on the y-axis, with the model on the x-axis.