WLAN as easy as a mobile service

Philipp Michalschik
LANCOM Systems GmbH
Mobile Service

- Turn your mobile device on
- Enter PIN to unlock SIM
- Mobile device connects to your service provider automatically
WLAN

• Turn WLAN on

• Wait for list of scanned SSIDs

• Choose an SSID (that you like)

• Enter credentials (passphrase, username/password, web-auth, certificate)
Network Selection without 802.11u

- Typically: Choice of Connection is up to the user
- Access Type unknown to user (Is this the right SSID for me? Do I have the required credentials? Is Internet available?)
- Different connection options via different SSIDs
- In a hotspot scenario: Each roaming partner requires its own SSID
802.11u - Interworking with External Networks

- STA can interwork with external networks (e.g. mobile service provider) in a hotspot or public network
- Information transfer (from external network *prior* to association)
- MAC layer enhancements for end-to-end communication of typically higher layer solutions
- Wi-Fi Alliance (WFA) Certification: Passpoint (based on HotSpot2.0 (HS2.0) element)
IEEE 802.11u/Passpoint

• STA scans for SSIDs with Interworking and HS2.0 Element

• Access based on credentials on STA rather than just SSID name(s)

• STA can get authenticated by external Authenticator, Hotspot with Proxy AAA service

• One SSID for multiple roaming partners (3GPP, Realm, Roaming partner)

• Initial Connection without user interaction possible, due to already installed credentials (compare to mobile service)
New Elements in Beacon

- Interworking
- Advertisement Protocol
- Roaming Consortium
Tag: Interworking

Tag Number: Interworking (107)
Tag length: 9
.... 0010 = Access Network Type: Chargeable public network (2)
...0 = Internet: 0
..0. = ASRA: 0
.0. = ESR: 0
0.... = UESA: 0
Venue Group: Business (2)
Venue Type: 8

Tag: Advertisement Protocol

Tag Number: Advertisement Protocol (108)
Tag length: 2

Advertisement Protocol element: ANQP

.... 1111 = Query Response Length Limit: 127
0.... = PAME-BI: 0

Advertisement Protocol ID: Access Network Query Protocol (0)

Tag: Roaming Consortium

Tag: Vendor Specific: Wi-FiAll: Hotspot 2.0 Indication
Interworking Element

• Defines Network Type: Private, Private-GuestAccess, Public(-free/-charge), […]

• Internet available on SSID?

• Additional Step(s) Required for Access (ASRA): Web-auth/WISPr

• (un-authenticated) Emergency Services Accessible ((U)ESA): USA notifies people e.g. tornado warnings

• Venue Information: Group (Restaurant, Business, Educational, …); Type (Stadium, Restaurant, Library, …)

• Homogenous Extended Service Set ID (HESSID): Same „ESS“ across multiple APs (Roaming)
Roaming Consortium

• Each Service Provider (SP) or group of SPs requires an IEEE organization identifier (OI), globally unique(!)

• Up to 3 OIs in a Beacon (Saves Airtime)

• Additional OIs within Advertisement Protocol
Advertisement Protocol

- Additional Information to the STA
- General Advertisement Service (GAS) frames to query specific information on device request via ANQP
- Access Network Query Protocol (ANQP)
- STA does not have an IP yet => L2 Protocol
Advertisement Protocol
Cont.

• Venue Name (readable for humans e.g. „Duesseldorf Airport“)

• Network Authentication Type Info:
 • Do users have to accept „Terms and Conditions“?
 • HTTP(S) Redirect URL
 • On-line enrollment

• IPv4 Info: Public IP?, NAT, Port restricted

• IPv6 Info: Available?
NAI Realm

- Network Access Identifier (NAI): user@realm (e.g. joe@example.com)

- Indicate Extensible Authentication Protocol (EAP) types:
 - Client Credential (Token, certificate, username/password, SIM)
 - Inner authentication method (PAP, CHAP, MSCHAP, MSCHAPv2)
3GPP Cellular

- Public Land Mobile Network (PLMN) ID, comprised of the Mobile Country Code (MCC) and Mobile Network Code (MNC)

- Mobile STA with cellular subscription looks for matching PLMN ID

- EAP-SIM (2G/3G SIM cred.) or EAP-AKA (4G USIM cred.)
Connection manager chooses SSID to join

Beacon with 802.11u element

- Probe Request
- Probe Response
- GAS Request
- GAS Response

Authentication (null)
- Authentication Response
- Association Request (SSID)
- Association Response (AID)
- 802.1X (EAPOL Start)
- 802.1X (EAP Identity Request)
- 802.1X (EAP Identity Response)
- 802.1X (EAP Auth. Exchange)
- 802.1X (EAP Success)
- 4-Way Handshake (PTK, GTK)

Pre-association protocol based on 802.11 action frames for GAS L2 transport

RADIUS (EAP Auth. Exchange)
RADIUS (Access Accept)

PLMN ID and/or Realm + EAP method learned from GAS exchange
HotSpot2.0

- Vendor specific ANQP format for additional information
- WAN metrics:
 - Link status: up/down/test
 - Down-/Uplink speed, load and load measurement duration
- Connection capabilities: Common IP protocols and ports (Firewall!)
- NAI Home Realm Query: STA asks if AP supports any of its installed/configured NAI realms
- Operating class indication element: On which channels are APs with Passpoint enabled
Devices

• Passpoint capable devices:

 • Apple iOS 7 devices

 • Android devices (if option is enabled): e.g. Samsung Galaxy S4/Note3, Sony Xperia Z1, LG G2/Flex, HTC One/One Max

 • AP/WLC: Ruckus, Cisco, Aruba, Motorola, Xirrus and LANCOM :-)

• Networks with 802.11u still support non-11u clients
Conclusion

• Connection decision is moved from the user to the STA (like mobile service)

• Valuable information prior to association

• Slowly but steady growing STA support

• Perfect for mobile data offloading in high density venues (e.g. stadium, shopping malls, airports)
Thank you for your attention! Questions?
Known Issues

- Devices connect to known SSIDs before searching Passpoint SSIDs
- A lot to configure on AP and STA for good connection choices
- Bad Wi-Fi connection is not indicated (You are too far away from the AP)
- WAN connection could be under-provisioned
Mixed Stuff

• Proper QoS Map (DSCP to UP) Mapping for each Service Provider

• 802.21: Media Independent Handover (MIH) support

• Mobile Data Offloading (MDO) in high density areas e.g. stadium or airport
[1]: GAS/ANQP graph on page 11: http://a030f85c1e25003d7609-b98377ae968aad08453374eb1df3398.r40.cf2.rackcdn.com/wp/wp-how-interworking-works.pdf (page 6)

[2]: Connection graph on page 15: www.terena.org/activities/tf-mobility/meetings/26/07-11u-Dave.pptx (page 9)